
Templates Documentation
Release 0.0.0

Carel van Dam

Jan 12, 2021

Contents:

1 Setup 1

2 Django 3

3 Flask 7

4 Quart 9

5 Sphinx 11

6 Tornado 13

7 Template(s) 15

8 Extentions 21

9 Design 23

10 Contribution 25

11 Glossary 31

12 Indices and tables 35

Index 37

i

ii

CHAPTER 1

Setup

1.1 Installation

Users will typically install the package directly from the Python Package Index (PyPI) while developers and con-
tributers may prefer a source based installation.

1.1.1 Python Package Index (PyPI)

Web-Templates is hosted upon PyPI and is installed most conveniently through pip, the command line installation
utility

pip install web-templates

Users looking to use the bleeding edge version of the package can install it directly from the repository

pip install git+https://gitlab.com/manaikan-open-source/web-templates/

1.1.2 Repository

The project may be cloned from the repository repository using git, the command line version control management
utility,

git clone https://gitlab.com/manaikan-open-source/web-templates/ web-templates

and subsequently installed through pip

pip install -e .

1

Templates Documentation, Release 0.0.0

1.2 Uninstallation

Similarly, the package is uninstalled using pip

pip uninstall web-templates

2 Chapter 1. Setup

CHAPTER 2

Django

2.1 Sphinx

The Sphinx-Django section describes how to convert ones Sphinx sources into an intermediate target that is embed-
dable within Django. This section describes how to embed this intermediate source into ones pages served by Django.

2.1.1 Configuration

Given a standard Django project structure :

Website Web Application

PROJECT
+- WEBAPP
| +- settings.py
| +- views.py
| +- urls.py
| +- ...
+- templates

+- DOCUMENTATION

PROJECT
+- WEBAPP

+- templates
+- DOCUMENTATION

+- settings.py
+- views.py
+- urls.py
+- ...

Where WEBAPP is either the website or a web application created by django-admin. Perform the following oper-
ations from within the PROJECT root.

Builds ones documentation, setting TARGET to templates/DOCUMENTATION for a website, :

sphinx-build -D html_theme=sphinx_django [OPTIONS] SOURCE templates/DOCUMENTATION
→˓[FILES...]

or WEBAPP/templates/DOCUMENTATION for a web application

3

Templates Documentation, Release 0.0.0

sphinx-build -D html_theme=sphinx_django [OPTIONS] SOURCE WEBAPP/templates/
→˓DOCUMENTATION [FILES...]

Include the templates folder as a source for templates for the website :

or include the web application within ones site configuration

Create a base template named base.sphinx.html (Click to download). Provide a view function

and register it under the url path /documents/.

If your setup is for a web application be sure to link across to it from the website.

Multiple sets of documentaion can be hosted provided one replaces WEBAPP and DOCUMENATION uniquely for
each such application.

2.2 Configuration

Django requires that one register Web-Templates before it will acknowledge the templates that it provides. Within
ones WEBSITE/settings.py file add web_templates.django under INSTALLED_APPS as shown

INSTALLED_APPS = [...
'web_templates.django',
...]

This makes the skeleton.html available for extention by the base template, base.html, of ones project.

2.3 Base Template(s)

Once Web-Templates is configured one should create a project wide base.html file for their website or web appli-
cation. Create the WEBSITE/templates/base.html and extend the skeleton.html as necessary.

Ideally the base template of ones web application(s), APPLICATION/base.html, should both require and extend
this template, base.html, to effect their respective views.

2.4 Generic Template

Even without a standardized template for Django ones finds that some combinations of the Django packages have
implemented fairly similar conventions. Certainly it seems feasible to provide a generic template for ones project that
will accommodate these conventions with the skeleton provided by Web-Templates.

The following describes such a generic base file (Click to download). First it extends the skeleton provided by
Web-Templates.

{% extends 'skeleton.html' %}

The following template processors and tags may then be enabled as one requires.

Debug It is common, under development, to view various debugging information. Django provides the debug tem-
plate tag for this very purpose. Stefano suggests making this output available in the source of a page but hiding
it normally.

4 Chapter 2. Django

https://docs.djangoproject.com/en/2.2/ref/templates/builtins/#debug
https://stackoverflow.com/a/4051941

Templates Documentation, Release 0.0.0

{# block main_debug %}<div style="display:none;"><pre>{% debug|escape %}</pre></
→˓div>{% endblock main_debug #}

Static Files

The base template makes the media and static files available globally within a projects’ templates. It
might be best to handle this on the application level though

{# load staticfiles #}

Site Trees Commonly one also needs to include some form of navigational component; sitetrees provides a thorough
yet highly configurable structure for this.

{# load sitetree #}

2.4. Generic Template 5

Templates Documentation, Release 0.0.0

6 Chapter 2. Django

CHAPTER 3

Flask

Web templates can be used with a flask application as follows

from flask import Flask
from webplates.flask.templates import register as register_webplates

app = Flask()
app = register_webplates(app)

Alternatively one may simply copy the skeleton.html file into ones projects’ template directory.

3.1 Mixin

Web-Templates also provides s mixin class for rendering templates

from webplates.flask.templates import TemplateMixin

class VIEW(TemplateMixin, ...):
...

7

Templates Documentation, Release 0.0.0

8 Chapter 3. Flask

CHAPTER 4

Quart

Quart is not supported at this time. Should you wish to contribute a template please see the Contribution section.

9

Templates Documentation, Release 0.0.0

10 Chapter 4. Quart

CHAPTER 5

Sphinx

5.1 Django

Web-Templates provides sphinx_django as the compliment to Sphinxs’ basic theme. To build ones documentation
such that it may be embedded into Django it is most convenient to override the html_theme setting at compilation
time.

sphinx-build -D html_theme=sphinx_django [OPTIONS] SOURCE TARGET [FILES...]

Then follow the instructions under Django-Sphinx.

5.1.1 Templates

The following have been observed within the Sphinx templates :

• Semantic tags are not used within their basic template for some reason; instead they rely upon div.document
and related classes.

• sidebar1 is structurally alongside div.document div while sidebar2 is nested within it.

• Semantic tags are not used within their basic template for some reason; instead they rely upon div.document
and related classes.

5.1.2 Skeleton

This is a complete replacement for the Sphinx Basic theme and relies heavily upon the work around described within
templates:Init and Term TAGS.

The relbar element and the footer div setup by sphinx are both bundled together for the moment and clobber
the footer tag from the layout. Ideally the footer div in the footer block of Sphinx should substitute the
footer_content in the Django skeleton. Similarly relbar2 would best be placed into the aside element.

11

Templates Documentation, Release 0.0.0

5.1.3 Basic

This tries to include the Sphinx templates and includes this as a dependency. This is largely done as an example so
that others might extend it for the other Sphinx themes.

Sphinx: Web Support provides the machinery to serves ones documentation through their web framework. implemen-
tation

Note: Sphinx: Web Support should be preferred over the information that follows.

Sphinx provides three means of incorporating ones documentation into ones web framework. A fourth method is
considered whereby the Jinja2, the HTML builder provided by sphinx, is allowed to execute normally yet the output
is decorated such that it may be consumed by a subsequent template engine.

Source processed by Sphinx Source processed by second engine Final output

{% block Jinja2 %}
{% block ENGINE %}
<html>
...

</html>
{% endblock ENGING %}
{% endblock Jinja2 %}

{% block ENGINE %}
<html>
...

</html>
{% endblock ENGING %}

<html>
...

</html>

The sphinx templates provided by Web-Templates support this embedding of Sphinx output into some other template
engine. This is down by nesting the syntax of the second engine as comments within the syntax of the first. This is an
experimental feature and may or may not work in all scenarios.

5.2 Blocks

Sphinx documents the blocks that it uses within the layout.html file provided by its base template.

12 Chapter 5. Sphinx

https://www.sphinx-doc.org/en/master/usage/advanced/websupport/index.html
https://github.com/shimizukawa/sphinx-websupport-app/blob/master/doc/tutorial.rst
https://github.com/shimizukawa/sphinx-websupport-app/blob/master/doc/tutorial.rst
https://www.sphinx-doc.org/en/master/usage/advanced/websupport/api.html#sphinxcontrib.websupport.WebSupport
https://www.sphinx-doc.org/en/master/templating.html
https://www.sphinx-doc.org/en/1.5/templating.html#blocks

CHAPTER 6

Tornado

Tornado is not supported at this time. Should you wish to contribute a template please see the Contribution section.

13

Templates Documentation, Release 0.0.0

14 Chapter 6. Tornado

CHAPTER 7

Template(s)

7.1 <Head>

Todo: Write

This section needs to be written :

• CSS Blocks

• Meta Blocks

• JS Blocks

7.1.1 Resets and Shivs

Due to the different Javascript and HTML implementations in different web browsers there has been a need to provide
HTML “shivs”, which extend the base set of tags supported by a browser, and CSS “resets” to normalize the default
spacing, padding and margins of elements within a page. Presently Web-Templates do not apply any particular “shiv”
or “reset” nor does it provision any block(s) for this. Should such blocks be required please open an issue.

Note: If there were a standard “shiv” or “reset” this package could certainly consider incorporating it but there seems
to be no clear consensus on the matter.

7.2 <Body>

Todo: Write

This section needs to be written :

15

Templates Documentation, Release 0.0.0

• Main structural blocks

• Main structural elements

• Review Js blocks to be more inline with the tempalates.rst documentation.

The structure described in the introduction is a bit “snoep” structurally. The <HEAD> and <BODY> elements are
fleshed out by Web-Templates to be more practical. Both elements are enclosed within their own blocks and provided
a minimal substructure2 that is readily overridden.

Table 1: Actual skeleton and resulting scaffold.
Skeleton Scaffold

{% block html dtd %}
<!DOCTYPE html>
{% endblock dtd %}
{% block html %}
<html>

{% block head %}
<head>
</head>
{% endblock head %}
{% block body %}
<body>
{% block %}
<header>
</header>
{% endblock %}
{% block %}
<nav>
</nav>
{% endblock %}
{% block %}
<main>
</main>
{% endblock %}
{% block aside %}
{% endblock %}
{% block %}
<footer>
</footer>
{% endblock %}

</body>
{% endblock body %}

</html>
{% endblock html %}

<!DOCTYPE html>
<html>
<head>
</head>
<body>

<header>
</header>
<nav>
</nav>
<main>
</main>
<!-- aside -->
<footer>
</footer>

</body>
</html>

The skeleton provides a “formally” correct HTML 5 document while allowing the user to modify this per their needs.
The <Head> and <Body> sections elaborate more upon the basic structure outlined above.

2 An aside block is provided so that the user may readily populate this should their layout call for it but the skeleton does not otherwise
populate the aside block.

16 Chapter 7. Template(s)

https://html.spec.whatwg.org/#document-metadata
https://html.spec.whatwg.org/#sections

Templates Documentation, Release 0.0.0

7.3 Blocks

Web-Templates tries to provide the only the necessary blocks for authors to hook into. Peppering the skeleton with
blocks is fairly harmless since they collapse to white space in the scaffold once the template is processed.

7.3.1 Naming

The following naming convention is used within the skeleton template.

block ::= [root + "_"] + tag + ["_" + stem]

Within the templates the terms set aside for the template engine are kept as short and canonical as possible. Roughly
speaking the terms are determined as follows :

• Use the last most unique element wherever possible e.g. the <MAIN> element in <HTML><BODY><MAIN>...
is referenced as main in the template language references rather then html_body_main.

• Repeated blocks are ideally distinguished by their enclosing tag where possible e.g. head_js and body_js is preferrable to head_js and js.

– Default/fallback blocks may also be identified e.g. js

• Repeated blocks are otherwise distinguished by their intent e.g. the css_site, css_page and css_view
blocks separately identify the CSS code for the site itself, the current page and its different representations of
that page e.g. monitor, mobile or print and horizontal or vertical layout.

• Where is no canonical location for a block and alternate such locations exist then it is preferable to omit the
default location e.g. use head_js_... and foot_js_... instead of js_....

Root(s)

The weplates:root that precedes the weplates:tag is used to distinguish a group of tags.

root ::= "head" | "body" | "foot"

This splits the skeleton into three parts, “head” and “body ” mapping respectively to the <head/> and <body/>
tags in HTML. “foot” is included by convention but has no analogue in HTML.

Javascript

foot proves quite useful in placing javascript exclusively after the body, foot_js_... as opposed to within the
head, head_js_.... head_js_... is synonymous with the more canonical js_... blocks since users should
really place their scripts in the <head/> setting the deferred attribute to delay their execution when required.

Example

Javascript libraries, commonly, are included in either the <head> or at the end of the <body> element within
a document. Correspondingly Web-Templates provides both head_js and body_js but it does not provide a
default js block since it should fall to the author to elect one location over the other. Authors might consdier
overriding one location with a default block substitution e.g. One authors {% block head_js %}{% block
js %}{% endblock js %}{% endblock head_js %} would clash with anothers {% block body_js

7.3. Blocks 17

Templates Documentation, Release 0.0.0

%}{% block js %}{% endblock js %}{% endblock body_js %} but this should be discouraged.

Note: Were a default js block to be included the canonical location appears to be within <head> element. Importing
the code at the end of the <body> element appears to be a browser/SEO optimization for the most part; specifically it
makes the page structure avilable prior to loading any code that relies upon it.

Tag(s)

Tags are used to identify a group of related blocks within the skeleton.

tag ::= html | meta | framework

These are split into roughly three groups.

HTML Tag(s)

These are named after the equivalent HTML tag that they enclose possible [#tags].

html ::= "header" | "nav"" | "main" | "aside" | "footer"

Meta Tag(s)

This is largely for meta information that is passed between the server and the client.

meta ::= "server" | "client" | "meta" | "css" | "rss" | "js"

The exceptions are for more esoteric blocks

browser (Rename to client) Browser specific settings

server (Not implemented) Server specific settings

meta Provides various meta information .e.g. editorial, locale, location, caching, refresh etc.

scripts The meta section also handles the various scripts e.g. Cascading style sheets, Javascript, RSS Feeds.

Framework Tag(s)

The framework tags prevent parts of the framework from clobbering other parts of the framework by splitting up where
the various parties include their modification for each template.

framework ::= "site" | "page" | "view"

This splits the tags up as follows

site Site wide settings that are applicable to all pages. Assigned by the website author in their base template; extending

18 Chapter 7. Template(s)

Templates Documentation, Release 0.0.0

the skeleton.

page Extentions specifci settings that are applicable to a group of related pages Assigned by the extention author in
their base template; this extends the base template of the website.

view Settings that are specific to a particular view. This serves as a hook for the website author to make any last
adjustments for a given extention.

Stem(s)

The stem allows for specialization of the block name.

stem ::= part | item | end

There are three such specializations.

Part(s)

The weplates:part succeeds the weplates:tag to distinguishes the individual elements of a group of tags.

part ::= "head" | "body" | "foot"
"prefix" | "content" | "suffix"

Parts are used universally to split a tag into three parts, namely the head, body and foot (Or synonmously the
prefix, contenst and suffix). This allows users control over which part, within a tag group, their code belongs.

Item(s)

Items are highly specific and do not generalize especially well. They are mostly used to identify a specific object for
substitution.

item ::= ITEM

End(s)

A curious scenario arises with certain template engines; when one template inherits another substituting an enclosing
block it becomes necessary for child template to fully re-implement the block in the parent template.

Example

Consider modification of the opening tag in an html block. The child template has to re-implement the entire structure
of the parent. In the example below the head block is accidentally excluded.

7.3. Blocks 19

Templates Documentation, Release 0.0.0

Parent Child

{% block html %}
<html OLD >

{% block head %}<head></head>{%
→˓endblock head %}
{% block body %}<body></body>{%

→˓endblock body %}
</html>
{% endblock html %}

{% block html %}
<html NEW >
{% block body %}<body></body>{%

→˓endblock body %}
</html>
{% endblock html %}

Jinja2 provides a super() method that pulls in the structure of the parent block one is inheriting/extending. The
Django Template Engine by contrast provides no such mechanism.

Web-Templates resolves this with a workaround that wraps all of the opening and closing tags with their own blocks,
hence the webplates:end terms in block names.

end ::= "init" | "term"

By consistently wrapping its tags the parent effectively “unwraps” the inner blocks.

Example

Application to the example above eliminates the error within the child template.

Parent Child

{% block html %}
{% block html_init %}<html>{% endblock
→˓html_init %}
{% block head %}<head></head>{%

→˓endblock head %}
{% block body %}<body></body>{%

→˓endblock body %}
{% block html_term %}</html>{% endblock
→˓html_term %}
{% endblock html %}

{% block html_init %}<html>{% endblock
→˓html_init %}
{% block body %}<body></body>{%

→˓endblock body %}
{% block html_term %}</html>{% endblock
→˓html_term %}

Default(s)

In some cases a loose convention is presumed e.g. content or main_content if this is observed to be fairly
prevalent and consistent then Web-Templates will nest the block within the canonical variant within the templates.
Such practice is done for convenience but heavily discouraged.

footnotes

20 Chapter 7. Template(s)

CHAPTER 8

Extentions

Todo: Review

This section is dated and needs to be reviewed and rewritten.

3rd parties providing additional data, fitting within the scope of this package, are welcome to do so provided they
do not overwrite the provided templates. Authors seeking to override these templates may do so by raising an issue
accordingly upon the gitlab interface for the repository. Ideally 3rd parties would name their package with reference
to this one, template-PACKAGE, but this is not always feasible especially when the templates are provided as
part of a larger unrelaetd package. In this case one asks that authors make reference to this package within their
documentation, include it as a dependency within their setup.py script. Ideally such templates would then reside
under a subpackage/folder as in templates.PACKAGE.*. Major frameworks may ontribute a template within the root
namespace but should inform the maintainers of templates by raising an issue. Should any conflicts arise as a
result these will be resolved by discussion betwen the parties involved or if no discussion is possible then the first
party reserving a name will win.

21

Templates Documentation, Release 0.0.0

22 Chapter 8. Extentions

CHAPTER 9

Design

Todo: Review

This section is dated and needs to be reviewed and rewritten.

9.1 Base Files

Todo: These base files are named base.ENGINE.html; this should be applied for all of the base frameworks. It
frees the user up to migrate from some base.html to base.ENGINE.html until they can adopt web templates
across their entire site and revert back to base.html. The “Sphinx in Django” section of the documentation also
illustrates the utility in having the sphinx_ENGINE themes compile ones documentation to depends upon a base.
ENGINE.html template rather then a base.html.

I believe these templates were measnt to ‘passivate’; that is setup the base functionality for the website for a given
template engine e.g. include boostrap/material design react etc.

In the package root there are a set of base.ENGINE.html files. i have forgotten their purpose to be honest but i
believe they are meant to generate the skeleton files that are ready to be processed by the Django Template Engine
(DTE) after the other template engine has processed the file.

base.ENGINE.html > FRAMEWORK/ENGINE > TEMPLATE.html(DTE) > Django Template Engine >
→˓PAGE.html

Consider a document generated by Sphinx, the base.sphinx.html template, creates a PAGE.html(DTE) page that can
then be processed by the Django template engine to produce the final output. This allows both template engines to
process the page in its usual manner but the content flows “upstream” until the final production.

Todo: Specifically for sphinx the file E:Pythonweb-templatesweb_templatessphinxdjangolayout.
html, a copy of E:Pythonweb-templatesweb_templatesbasiclayout.html, may be sued

23

Templates Documentation, Release 0.0.0

by sphinx to compile documentation that depends upon a base.sphinx.html file; based upon
the users base.html which in turn subclasses web-teplates/../skeleton.html. The cur-
rent E:Pythonweb-templatesweb_templatesbase.sphinx.html seems to duplicate the
E:Pythonsphinxsphinxthemesbasiclayout.html from the Sphinx base theme more then anything else;
I believe this was to be merged with E:Pythonweb-templatesweb_templatessphinxdjangolayout.
html. E:Pythonweb-templatesweb_templatesbase.sphinx.html was probably meant to serve as a
bridging template for users to simply copy or extend as necessary.

9.2 Structure

The templates are organized within the project as follows

9.2.1 Naming

The skeleton templates provided by Web-Templates for the base templates of other projects to inherit are named
accordingly to the following scheme

BACKEND_FRAMEWORK[/EXTENTION(S)][/FRONTEND_FRAMEWORK][/EXTENTION(S)]/skeleton.
→˓TEMPLATE_ENGINE.html

9.3 Django

9.3.1 Name Spaced Packages

Django does not pick up templates within a namespaced package, like templates, especially when there are mul-
tiple paths as is common with 3rd parties adding additional functionality. Providing templates through the following
structure

templates/
base.html

resulted in the following message, for example

django.core.exceptions.ImproperlyConfigured: The app module <module 'templates'
→˓(namespace)> has multiple filesystem locations (['..\\web-templates\\templates', '..
→˓\\other\\templates']); you must configure this app with an AppConfig subclass with
→˓a 'path' class attribute.

This implies one might select a preferred package by specifying a preferred root package within AppConfig.

A work around is to nest the template one level deeper, removing the ambiguity and appeasing Django accordingly.
Consequently web-tamples has been refactored from the original structure to the following one

templates/
django/
base.html

resolving the issue. Under the hood Python is selecting the unique subpackage, django, from the multi-targeted
namespace package, templates, that contains it; eliminating the ambiguity and finding the template accordingly.

Hence the need to use templates.django within the middleware of a projects settings.py file.

24 Chapter 9. Design

CHAPTER 10

Contribution

Todo: Review

This section is dated and needs to be reviewed and rewritten.

10.1 Structure

10.1.1 Package Structure

The package structure is outlined below and serves as a guideline for those providing competing and/or complementary
features.

Project/ # Project/Repsoitory root
templates/ # Namespace reserved for web-templates
django/ # Namespace reserved for Django templates
templates/skeleton.html # Django skeleton template

flask/ # Namespace reserved for Flask templates
tornado/ # Namespace reserved for Tornado templates
sphinx/ # Namespace reserved for sphinx templates
django.html # Reserved name for a Django template engine template
jinja.html # Reserved name for a Jinja/Jinja2 template

setup.py # Setup.py script that bundles everything together
MANIFEST.in # Manifest file that embeds the various data sources
→˓into the distributed package.

This package reserves the package namespace templates.* by providing a namespaced package/folder with the
the name templates in the project root. Furthermore the template names django.html and jinja.html are
reserved for the base HTML templates used by the Django and Jinja templating systems respectively.

Note: Given the package/template path package/django/templates/skeleton.html one includes

25

Templates Documentation, Release 0.0.0

package.django within INSTALLED_APPLICATIONS and extends skeleton.html within their base.
html template. Django knows to look for the templates under the templates subfolder.

10.1.2 Structure limitations

The desired structure for the core of the package is as follows

project\
templates\
django\templates\skeleton.html # Combines base.structure.html and base.html into a

→˓single file, currently available as
sphinx\templates\skeleton.html # Combines `base.sphinx.html`, `basic.layout.html`

→˓and `basic.layout - copy.html` into a single file
jinja\templates\skeleton.html # Combines `base.jinja.html` into a single file

Previously the following alternatives have been attempted but they fail for various reasons.

templates\
base.html

__init__.py

templates\
templates\base.html
__init__.py

Unpackageable Makes template into an explicit package

Django expects that a templates folder exists containing the templates. In the first structure Django simply ignores
the base.html as a result. In the second case Django finds the file as appropriate but it does not like the fact that the
root package is namespaced. The work around is to nest the package one level deeper to appease Django and get the
user to list templates.django under their INSTALLED_APPS in their settings.py file.

10.1.3 Artefacts

The following templates are the leftovers from prior development attempts.

basic/ Additional Sphinx related templates (Not sure on status or usage)
layout.html This embeds the jinja2 tags expected by sphinx within the django
→˓template tags (not sure how this differs from base.sphinx.html).
base.django.html The django base template as prescribed by modern HTML5;
→˓Originally base.structure.html
base.sphinx.html This is adapted from base.structure.html to accomodate Sphinx
→˓projects.
base.jinja.html This is adapted from base.structure to accomodate jinja as the
→˓template engine.
base.html This is adapted from base.structure to accomodate JavaScript
→˓libraries, this needs more work i.e. selectively enabling one or another library.

For the most part these are to be deprecated/deleted but there is still some value to extracted before doing so. The
templates under the basic should really be merged/compared against the base.sphinx,html file for instance as
this has allowed me to embed sphinx documentation within a Django site before for instance.

26 Chapter 10. Contribution

Templates Documentation, Release 0.0.0

10.2 HTML

The W3C defines the specification for HTML, CSS and Javascript (a.k.a. ECMA script). This section tries to summa-
rize/link to the relevant information that they provide.

10.2.1 W3C

The W3C has setup the Web accessiblity Initiative which aims to make the web more accessible to everyone. The
project should follow these recommendations as best as possible.

10.2.2 Schema

The Schema or Data Vocabulary provides assistive information to the search engine.

10.2.3 DTD

The W3 Schools lists the HTML tags supported by each DTD type.

10.3 Packages

10.3.1 Name Spaced Packages

Classic/Conventional Python packages consist of a folder containing a, typically empty, __init__.py file to iden-
tify them as such. Python 3.4 introduced namespaced packages which consist of a folder containing further sub-
packages or MODULE.py file(s), none of which are named __init__.py. Conveniently setuptools has al-
lowed package writers to embed “data” files within their packages for sometime. Combining these properties together
affords one the ability to distribute Python packages that, ironically, contain no Python code.

Furthermore namespaced packages act as mixins. That us any two modules nested under a common package path,
neither of which may contain an __init__.py file, may be imported simultaneously as though they were part of
the same package.

Example :

As an example consider the two files, MODULE_A.py and MODULE_A.py; both of which are nested under a folder
with the same name, PACKAGE, but located at different places upon ones file system.

this/project # Some path in sys.paths
PACKAGE/ # Common package path
... # Other modules none of which are named __init__.py
MODULE_A.py # Module in the namespace'd set

that/project # Some path in sys.paths
PACKAGE/ # Common package path
... # Other modules none of which are named __init__.py
MODULE_B.py # Module in the namespace'd set

Python views both files as though they were modules, MODULE_A and MODULE_B, under the same namespaced
package, PACKAGE, making it possible to perform the following imports

from PACKAGE import MODULE_A
from PACKAGE import MODULE_B

10.2. HTML 27

https://schema.org/
http://www.data-vocabulary.org/
https://www.w3schools.com/tags/ref_html_dtd.asp

Templates Documentation, Release 0.0.0

This is not possible with classical Python packages, in fact adding an __init__.py file to either package breaks
the above import statements.

Effectively one may create a namespaced package that contains only data and will merge well with other packages
that do the same. Under the mild restriction that such packages do not include an __init__.py file within their
structure.

10.4 Tools

This section reviews some of the tools available to the web developer.

10.4.1 HTML Validation

HTML validation can be done through the W3.org validator .

Symbolic Links

Symbolic links may be made on most systems these days. To do so on windows use the following

mklink /J TARGET SOURCE

While linux users should employ

ln -s source target

Note: Originally the templates where made available to the projects one was sorking on by symbolic links. This made
the same files available to multiple projects with different requirements and proved to be very inflexible and prompted
the proper packaging of these templates.

10.4.2 Crimson Editor

The Jinja template is generated from the Django template by copying it and performing the following substitutions.

{%([^%]*)%} -> {{'{%\1%}'}}
regular expression replacement pattern

Note: The regular expression and assosciated pattern are specific to crimson editor.

10.5 Templates

Django used to search the PROJECT/WEBSITE/templates folder for common templates, it no longer does so and
expects a templates folder to reside in the project root, PROJECT/templates. Should one opt to their templates
within the website directory, under PROJECT/WEBSITE/templates, then they should include them within their
project settings by assigning the templates[dirs] attribute in the WEBSITE/settings.py file.

28 Chapter 10. Contribution

http://validator.w3.org/

Templates Documentation, Release 0.0.0

TEMPLATES = {...
DIRS = ['website/templates'],

...}

Name Spaced Packages discusses how one might distribute common template/data through Python packages. Such
packages, and related 3rd party extentions, allow for unhindered contribution, provided all parties adhere to a few
conventions. Package Structure outlines the conventions for the web-templates package so that no one overrides or
breaks anothers contribution.

Todo: Review

This section is dated and needs to be reviewed and rewritten.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/web-
templates/checkouts/latest/docs/contribution.rst, line 5.)

Todo: Review

This section is dated and needs to be reviewed and rewritten.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/web-
templates/checkouts/latest/docs/design.rst, line 5.)

Todo: These base files are named base.ENGINE.html; this should be applied for all of the base frameworks. It
frees the user up to migrate from some base.html to base.ENGINE.html until they can adopt web templates
across their entire site and revert back to base.html. The “Sphinx in Django” section of the documentation also
illustrates the utility in having the sphinx_ENGINE themes compile ones documentation to depends upon a base.
ENGINE.html template rather then a base.html.

I believe these templates were measnt to ‘passivate’; that is setup the base functionality for the website for a given
template engine e.g. include boostrap/material design react etc.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/web-
templates/checkouts/latest/docs/design.rst, line 12.)

Todo: Specifically for sphinx the file E:Pythonweb-templatesweb_templatessphinxdjangolayout.
html, a copy of E:Pythonweb-templatesweb_templatesbasiclayout.html, may be sued
by sphinx to compile documentation that depends upon a base.sphinx.html file; based upon
the users base.html which in turn subclasses web-teplates/../skeleton.html. The cur-
rent E:Pythonweb-templatesweb_templatesbase.sphinx.html seems to duplicate the
E:Pythonsphinxsphinxthemesbasiclayout.html from the Sphinx base theme more then anything else;
I believe this was to be merged with E:Pythonweb-templatesweb_templatessphinxdjangolayout.
html. E:Pythonweb-templatesweb_templatesbase.sphinx.html was probably meant to serve as a
bridging template for users to simply copy or extend as necessary.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/web-
templates/checkouts/latest/docs/design.rst, line 29.)

Todo: Review

10.5. Templates 29

Templates Documentation, Release 0.0.0

This section is dated and needs to be reviewed and rewritten.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/web-
templates/checkouts/latest/docs/extentions.rst, line 5.)

Todo: Review how to show a Software Application, Bread Crumb, FAQ and How T links.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/web-
templates/checkouts/latest/docs/seo.rst, line 15.)

Todo: Write

This section needs to be written :

• Main structural blocks

• Main structural elements

• Review Js blocks to be more inline with the tempalates.rst documentation.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/web-
templates/checkouts/latest/docs/templates/body.rst, line 7.)

Todo: Write

This section needs to be written :

• CSS Blocks

• Meta Blocks

• JS Blocks

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/web-
templates/checkouts/latest/docs/templates/head.rst, line 7.)

30 Chapter 10. Contribution

CHAPTER 11

Glossary

CSS (Cascading Style Sheets) These code embedded within a webpage that specifies how it ought to look

Django A web framework written in Python

DTD (Document Type Declaration) A tag at the top of an HTML document declaring it as one or other variant of
HTML

DTE (Django Template Engine) The engine that processes the DTL

DTL (Django Template Language) The Django Template Lanugage

Flask A micro-web framework written in Python

HTML (Hyper Text Markup Language) This is the underlying format for a webpage

Jinga Jinga and Jinga II are standalone template engines that a number of Python frmeworks have leveraged instead
of writing their own.

Template Engine Django provides it’s own template engine that, to ones knowledge, is known simply as the template
engine. This engine is used only by django and has not been ported to other frameworks

Tornado A web framework originating from the twisted project

Python Seriously ?!? A programing language focused upon code readability rather then wearing out the punctuation
keys upon ones key board

PYPI (Python Package Index) The Python package index, a.k.a. The Cheese Shop after the Monty Python Sketch,
hosts all of the publicly available Python packages.

Sphinx Pythons’ documentation generation utility, often useful in the documentation of other packages in other lan-
guages.

W3C (World Wide Web Consortium) The world wide web consortium are a body of ICANN, essentially the people
that define the internet

WAI (Web Accessiblity Initiative) The web accessibility initiative aims to make the web more acccessible to persons
with dissabilities

31

Templates Documentation, Release 0.0.0

Problem

There isn’t a standardized base template that the authors(s) of websites and the author(s) of extentions for a given
web framework can collectively reference. The website author specifies the base template for their website per their
requirements, populating it with the components provided by framework extentions. The authors of framework ex-
tentions can not know the final structure of the base template for a given website and must assume which block such
templates might provide.

Objective

The package is to provide a standard structure/methodology for both the website and extention author(s) of the respec-
tive frameworks.

Scope

Web-Templates focuses primarily upon the Python web frameworks relying upon templating mechanism

Proposal

A skeleton template that both the authors of websites and of framework extentions can reference for their chosen
framework. This has the following benefits :

• The webiste author(s) using these frameworks, and their extention packages, can customize their base template,
that extends the skeleton template, against a standardized set of guidelines.

• The extention author(s) of these frameworks can, reasonably, presume the existance of a standardized base
template.

Solution

Web-Templates provides a skeleton with the minimal structure necessary to produce a standardized scaffold for the
HTML documents for use with Python’s respective Web Frameworks (Django/Tornado/Flask/etc.). The “ideal” skele-
ton should produce the following scaffold after being passed through ones template engine1 :

1 The package actually extends this “ideal” skeleton to provide a template with a more practical alternative.

32 Chapter 11. Glossary

https://html.spec.whatwg.org/

Templates Documentation, Release 0.0.0

Table 1: Ideal skeleton and resulting scaffold.
Skeleton Scaffold

{% block html dtd %}
<!DOCTYPE html>
{% endblock dtd %}
{% block html %}
<html>

{% block head %}
<head>
</head>
{% endblock head %}
{% block body %}
<body>
</body>
{% endblock body %}

</html>
{% endblock html %}

<!DOCTYPE html>
<html>

<head></head>
<body></body>

</html>

Organization

The documentation is partitioned into sections that are pertinent to the package users or website authors, third parties
providing framework extentions and package contributors.

Setup describes the installation and removal of Web-Templates. Then following section(s), each dedicated respectively
to a framework, details the configuration and usage of Web-Templates within ones project(s). Each section prescribes
a standardized base template, where possible, and details the underlying skeleton that it extends.

Third parties incorporating Web-Templates into their projects should read the extentions section along with the section
relevant to the framework(s) they support. The rational, nomenclature and structure of the skeleton is described in
Template.

Finally the package design is described and how one might constribute.

Note: This package only supports Python 3.4 and onwards as it relies upon name-spaced packages (See PEP 420 and
Name Spaced Packages).

footnotes

33

https://www.python.org/dev/peps/pep-0420

Templates Documentation, Release 0.0.0

34 Chapter 11. Glossary

CHAPTER 12

Indices and tables

• genindex

• modindex

• search

35

Templates Documentation, Release 0.0.0

36 Chapter 12. Indices and tables

Index

C
CSS, 31

D
Django, 31
DTD, 31
DTE, 31
DTL, 31

F
Flask, 31

H
HTML, 31

J
Jinga, 31

P
PyPI, 31
Python, 31
Python Enhancement Proposals

PEP 420, 33

S
Sphinx, 31

T
Template Engine, 31
Tornado, 31

W
W3C, 31
WAI, 31

37

	Setup
	Django
	Flask
	Quart
	Sphinx
	Tornado
	Template(s)
	Extentions
	Design
	Contribution
	Glossary
	Indices and tables
	Index

